3D Printing Ushers in New Era in Fight Against Cancer

YERUSHALAYIM
Sourasky Medical Center in Tel Aviv. (Moshe Shai/FLASH90/File)

The technology of 3D printing has made possible an important breakthrough in the battle against cancer that could lead to the development of new drugs and personalized medicine.

Researchers at Tel Aviv University announced on Wednesday that they succeeded in printing an entire active and viable glioblastoma tumor using a 3D printer. The 3D-bioprinted tumor includes a complex system of blood vessel-like tubes through which blood cells and drugs can flow, simulating a real tumor.

The 3D-bioprinted models are based on samples from patients, taken directly from operating rooms at the Neurosurgery department of Tel Aviv Sourasky Medical Center. The new study’s results were published today in the prestigious journal Science Advances.

“Glioblastoma is the most lethal cancer of the central nervous system, accounting for most brain malignancies,” says Prof. Satchi-Fainaro. “In a previous study, we identified a protein called P-Selectin, produced when glioblastoma cancer cells encounter microglia – cells of the brain’s immune system. We found that this protein is responsible for a failure in the microglia, causing them to support rather than attack the deadly cancer cells, helping the cancer spread. However, we identified the protein in tumors removed during surgery, but not in glioblastoma cells grown on 2D plastic petri dishes in our lab. The reason is that cancer, like all tissues, behaves very differently on a plastic surface than it does in the human body. Approximately 90% of all experimental drugs fail at the clinical stages because the success achieved in the lab is not reproduced in patients.”

To address this problem, the research team led by Prof. Satchi-Fainaro and PhD student Lena Neufeld, recipient of the prestigious Dan David Fellowship, created the first 3D-bioprinted model of a glioblastoma tumor, which includes 3D cancer tissue surrounded by extracellular matrix, which communicates with its microenvironment and functional blood vessels.

To Read The Full Story

Are you already a subscriber?
Click to log in!