Oligonucleotides Enlisted in War on Cancer

YERUSHALAYIM -
cancer research
Oligonucleotides, the RNA-binding decoy molecule. (Rotem Karni)

A research team at Hebrew University has developed an ingenious technology for inhibiting the spread of cancer cells by deploying RNA molecule decoys, a method that could yield an anti-cancer drug in the coming years.

Recent research has shown that RNA-binding proteins play a major role in cancer growth. These proteins, active in all cells but especially so in cancer cells, bind to RNA molecules and accelerate cancer cell growth. Unfortunately, no cancer treatment has targeted these proteins. Until now.

In the upcoming issue of Nature Communications , Professor Rotem Karni and his team at the Hebrew University in Yerushalayim (HU) present a new technology to fight cancer. They designed decoy molecules that trick RNA-binding proteins into binding with them. Once bound, these RNA-binding proteins are no longer able to bind with the natural RNA molecules in cancer cells and lose their cancer-promoting activity. These “sterile” decoy RNA molecules are called oligonucleotides.

“Our technology is a new approach in the war on cancer. By understanding the biological function of RNA-binding proteins we successfully designed decoy molecules that inhibit these proteins and move us ever closer to creating an anti-cancer drug,” Professor Karni said.

To test the decoys, they treated brain cancer cells with decoy molecules. When the cells were then injected into healthy mice, the cancer cells did not replicate and, soon after, the tumors died off.

“We still need to examine the toxicity of the decoy molecules and to test their efficacy on animals before we can move on to humans,” cautioned Karni. “However, I’m optimistic, given that we’ve already succeeded at creating decoy oligonucleotides that inhibit RNA binding proteins…”

To date, a patent describing this technology has been registered in the United States and Europe by Yissum, Hebrew University’s R&D company.